Where Does the Weirdness Go? (Why Quantum Mechanics Is Strange, But Not As Strange As You Think) by David Lindley

If you want an introduction to quantum mechanics, this is a very good book to read. I didn’t get some of it, but I don’t blame the author, who does an excellent job. He was a theoretical astrophysicist before he began editing science magazines. Since the book was published in 1996, some of it may be out of date, but not enough to make a difference to the general reader.

The title “Where Does the Weirdness Go?” refers to a puzzle. Since events at the quantum level are weird, why doesn’t that weirdness show up at the level of our ordinary experience? Reality looks fairly well-defined to us. We don’t see the things around us as probabilities. The chair you’re sitting on is right there under you; it’s not possibly there and possibly not there. Electrons and photons may be in an indeterminate state, possibly here and possibly there, but that probabilistic weirdness disappears when it comes to higher-level stuff.

I think the book’s subtitle (“Not As Strange As You Think”) refers to the puzzle’s answer. Lindley explains that, roughly speaking, quantum weirdness disappears when something called “quantum coherence” turns into “quantum decoherence”. When a quantum state is “coherent”, its properties are mere probabilities. But that can only be the case if the quantum system is isolated from other quantum systems. Here’s how Wikipedia puts it:

… when a quantum system is not perfectly isolated, but in contact with its surroundings, coherence decays with time, a process called quantum decoherence. As a result of this process, the relevant quantum behaviour is lost.

The quantum behavior referred to here is the weirdness (things like “is it a particle or is it a wave?” and “spooky action at a distance”). Since quantum systems (photons, electrons, paired particles) are rarely, if ever, appropriately isolated inside objects like chairs, clouds and chickens, those types of things don’t behave weirdly.  The constant atomic and sub-atomic turmoil inside everyday objects means that their properties are defined or definite, not probabilistic. The stuff we see around us doesn’t display any quantum weirdness because there are trillions upon trillions of quantum-level interactions occurring at every moment.

One thing the book makes clear is that there’s nothing special about quantum states being measured. Nor does human consciousness have any special role in quantum mechanics. In fact, measurement is an example of decoherence. When a physicist measures an electron, it is no longer isolated. In order to be measured, the electron has to interact with something else at the quantum level. That results in the electron’s possible position or momentum becoming real, not probabilistic. So when we hear about the importance of measurement in quantum mechanics, it only means that something at the quantum level is interacting with something else at that level. Most such interactions have nothing at all to do with us humans. 

Something (among many) I don’t understand: Once an electron has lost its probabilistic nature by interacting with some other quantum-level thing, do any of its properties ever become probabilistic again? If not, it would seem like every electron or photon in the universe would eventually have well-defined properties. 

I’ll say one more thing about the book. The author subscribes to what’s known as the “Copenhagen interpretation” of quantum mechanics. Apparently, most physicists do. The Copenhagen interpretation is a response to questions like “what’s really going on at the quantum level?” and “is it possible to explain why quantum events are so weird?” The answer given by the Copenhagen interpretation is: “Don’t bother trying to understand what’s happening. We can’t explain what’s happening and there is no sense in trying, because there is no definite reality to be explained at that level until measurement (or quantum-level interaction) occurs. This is just the way the world is.”

The author concludes by asking “will we ever understand quantum mechanics?” Here’s his answer:

But we do [understand it], don’t we? As an intellectual apparatus that allows us to figure out what will happen in all conceivable kinds of situations, quantum mechanics works just fine, and tells us whatever … we need to know….

[But] quantum mechanics clearly does not fit into any picture that we can obtain from everyday experience of how the world works… It throws us off balance… Physics, and the rest of science, grew up with the belief in objective reality, that the universe is really out there and that we are measuring it…. And the longer the belief was retained, the more it came to seem as it must be an essential part of the foundation of physics….

Then quantum mechanics came along and destroyed that notion of reality. Experiment backs up the axioms of quantum mechanics. Nothing is real until you measure it [or it comes into contact with something else!], and if you try to infer from disparate sets of measurements what reality really is, you run into contradictions….

A true believer might conclude that objective reality must still be there somewhere, beneath quantum mechanics. That’s what Einstein believed….[But] if quantum mechanics does not embody an objective view of reality, then evidently an objective view of reality is not essential to the conduct of physics…

[But] quantum mechanics, despite its lack of an objective reality, nevertheless gives rise to a macroscopic world that acts, most of the time, as if it were objectively real… And so, almost paradoxically, we can believe in an objective reality most of the time, because quantum mechanics predicts that the world should behave that way. But it’s because the world behaves that way that we have acquired such a profound belief in objective reality — and that’s what makes quantum mechanics so hard to understand [222-224]