Does Consciousness Reside in the Brain’s Electromagnetic Field?

At bottom, it all seems to be a bunch of fields:

In the modern framework of the quantum theory of fields, a field occupies space, contains energy, and its presence precludes a classical “true vacuum”. This has led physicists to consider electromagnetic fields to be a physical entity, making the field concept a supporting paradigm of the edifice of modern physics [Wikipedia].

So maybe consciousness is a special type of field generated by brains. Johnjoe McFadden is a professor of molecular genetics in England. He’s written about his electromagnetic field theory of consciousness for Aeon:

Just how do the atoms and molecules that make up the neurons in our brain . . . manage to generate human awareness and the power of thought? In answering that longstanding question, most neurobiologists today would point to the information-processing performed by brain neurons. . . . This [begins] as soon as light and sound [reach the] eyes and ears, stimulating . . . neurons to fire in response to different aspects of [the] environment. . . .

Each ‘firing’ event involves the movement of electrically charged atoms called ions in and out of the neurons. That movement triggers a kind of chain reaction that travels from one nerve cell to another via logical rules, roughly analogous to the AND, OR and NOT Boolean operations performed by today’s computer gates, in order to generate outputs such as speech. So, within milliseconds of . . . glancing at [an object], the firing rate of millions of neurons in [the] brain [correlates] with thousands of visual features of the [object] and its [surroundings]. . . .

Yet information-processing clearly isn’t sufficient for conscious knowing. Computers process lots of information yet have not exhibited the slightest spark of consciousness [note: or so we believe]. Several decades ago, in an essay exploring the phenomenology of consciousness, the philosopher Thomas Nagel asked us to imagine what it’s like to be a bat. This feature of being-like-something, of having a perspective on the world, captures something about what it means to be a truly conscious ‘knower’. In [a] hospital room watching my son’s EEG, I wondered what it was like to be one of his neurons, processing the information [from] the slamming of a door [in the hall]. As far as we can tell, an individual neuron knows just one thing – its firing rate.

It fires or doesn’t fire based on its inputs, so the information it carries is pretty much equivalent to the zero or one of binary computer language. It thereby encodes just a single bit of information. The value of that bit, whether a zero or a one, might correlate with the slamming of a door, but it says nothing about the door’s shape, its colour, its use as a portal between rooms or the noise of its slamming – all features that I’m sure were part of my son’s conscious experience. I concluded that being a single neuron in my son’s brain would not feel like anything.

Of course, you could argue, as neurobiologists usually do, that although a single neuron might know next to nothing, the collection of 100 billion neurons in my son’s brain knew everything in his mind and would thereby feel like something. But this explanation bumps into what’s known as the binding problem, which asks how all the information in millions of widely distributed neurons in the brain come together to create a single complex yet unified conscious perception of, say, a room . . .

Watching those wiggly lines march across the EEG screen gave me the germ of a different idea, something that didn’t boil down to pure neuronal computation or information-processing. Every time a neuron fires, along with the matter-based signal that travels down its wire-like nerve fibre, it also projects a tiny electromagnetic (EM) pulse into the surrounding space, rather like the signal from your phone when you send a text. So when my son heard the door close, as well as triggering the firing of billions of nerves, its slamming would have projected billions of tiny pulses of electromagnetic energy into his brain. These pulses flow into each other to generate a kind of pool of EM energy that’s called an electromagnetic field – something that neurobiologists have neglected when probing the nature of consciousness.

Neurobiologists have known about the brain’s EM field for more than a century but have nearly always dismissed it as having no more relevance to its workings than the exhaust of a car has to its steering. Yet, since information is just correlation, I knew that the underlying brain EM field tremors that generated the spikes on the EEG screen knew the slamming of the hospital door, just as much as the neurons whose firing generated those tremors. However, I also had enough physics to know that there was a crucial difference between a million scattered neurons firing and the EM field generated by their firing. The information encoded by the million discrete bits of information in a million scattered neurons is physically unified within a single brain EM field.

The unity of EM fields is apparent whenever you use wifi. Perhaps you’re streaming a radio documentary . . . on your phone while another family member is watching a movie, and another is listening to streamed music. Remarkably, all this information, whether movies, pictures, messages or music, is instantly available to be downloaded from any point in the vicinity of your router. This is because – unlike the information encoded in discrete units of matter such as computer gates or neurons – EM field information is encoded as immaterial waves that travel at the speed of light from their source to their receiver. Between source and receiver, all those waves encoding different messages overlap and intermingle to become a single EM field of physically bound information with as much unity as a single photon or electron, and which can be downloaded from any point in the field. The field, and everything encoded in it, is everywhere.

While watching my son’s EEG marching across the screen, I wondered what it was like to be his brain’s EM field pulsing with physically bound information correlating with all of his sense perceptions. I guessed it would feel a lot like him.

Locating consciousness in the brain’s EM field might seem bizarre, but is it any more bizarre than believing that awareness resides in matter? Remember Albert Einstein’s equation, E = mc2. All it involves is moving from the matter-based right-hand side of the equation to energy located on the left-hand side. Both are physical, but whereas matter encodes information as discrete particles separated in space, energy information is encoded as overlapping fields in which information is bound up into single unified wholes. Locating the seat of consciousness in the brain’s EM field thereby solves the binding problem of understanding how information encoded in billions of distributed neurons is unified in our (EM field-based) conscious mind. It is a form of dualism, but a scientific dualism based on the difference between matter and energy, rather than matter and spirit.

Awareness is then what this joined-up EM field information feels like from the inside. So, for example, the experience of hearing a door slam is what an EM field perturbation in the brain that correlates with a door slamming, and all of its memory neuron-encoded associations, feels like, from the inside.

But why? Whether neurons are firing synchronously should make no difference to their information-processing operations. Synchrony makes no sense for a consciousness located in neurons – but if we place consciousness in the brain’s EM field, then its association with synchrony becomes inevitable.

Toss a handful of pebbles into a still pond and, where the peak of one wave meets the trough of another, they cancel out each other to cause destructive interference. However, when the peaks and troughs line up, then they reinforce each other to make a bigger wave: constructive interference. The same will happen in the brain. When millions of disparate neurons recording or processing features of my desk fire asynchronously, then their waves will cancel out each other to generate zero EM field. Yet when those same neurons fire synchronously, then their waves will line up to cause constructive interference to project a strong EM signal into my brain’s EM field, what I now call the conscious electromagnetic information (cemi) field. I will see my desk.

I’ve been publishing on cemi field theory since 2000, and recently published an update in 2020. A key component of the theory is its novel insight into the nature of what we call ‘free will’. . . . Most non-modern people . . . probably believed that [a] supernatural soul was the driver of . . . willed actions. When . . . secular philosophers and scientists exorcised the soul from the body, voluntary actions became just another motor output of neuronal computation – no different from those that drive non-conscious actions such as walking, blinking, chewing or forming grammatically correct sentences.

Then why do willed actions feel so different? In a 2002 paper, I proposed that free will is our experience of the cemi field acting on neurons to initiate voluntary actions. Back then, there wasn’t much evidence for EM fields influencing neural firing – but experiments by David McCormick at Yale University School of Medicine in 2010 and Christof Koch at Caltech in 2011 have demonstrated that neurons can indeed be perturbed by weak, brain-strength, EM fields. At the very least, their experiments suggest the plausibility of a wifi component of neuronal information processing, which I claim is experienced as ‘free will’.

The cemi field theory also accounts for why our non-conscious and conscious minds operate differently. One of the most striking differences between the two is that our non-conscious mind can do many things at once, but we are able to engage in only one conscious task at a time. [Try to] divide a number like 11,357 by 71 while concentrating on a game of chess. Our non-conscious mind appears to be a parallel processor, whereas our conscious mind is a serial processor that can operate only one task at a time.

The cemi field theory accounts for these two modes by first accepting that most brain information-processing – the non-conscious sort – goes solely through its neuronal ‘wires’ that don’t interact through EM fields. This allows different tasks to be allocated to different circuits. In our distant past, all neural computation likely took this parallel-processing neuronal route. . . . However, at some point in our evolutionary history, our ancestors’ skulls became packed with more and more neurons such that adjacent neurons started to interfere with each other through their EM field interactions. Mostly, the interference would have impaired function. Natural selection would then have kicked in to insulate neurons involved in these vital functions.

Occasionally, electrical interference might have been beneficial. For example, the EM field interactions might have conferred the ability to compute with complex joined-up packets of EM field information, rather than mere bits. When this happened, natural selection would have pulled in the other direction, to increase EM field sensitivity. Yet there was also a downside to this way of processing information. Remember the pebbles tossed into the pond: they interfere with one another. Different ideas dropped into the brain’s cemi field similarly interfere with one another. Our conscious cemi-field mind inevitably became a serial computer that can do only one thing at a time.